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Abstract This article shows that the Gibbs function topological manifold G(p, T,

x1, x2, . . . , xC ) at the thermodynamic equilibrium is always two-dimensional (2D).
This means that the set of values G, regardless of the number of independent com-
ponents C , creates a 2-D surface. Based on a state with zero degrees of freedom as
a reference state, it was shown that the state of a thermodynamic equilibrium is rep-
resented by a graph on such a 2-D surface. In the equilibrium state, graph edges that
connect points corresponding to individual degrees of freedom have a minimal length.

Keywords Graph theory · Thermodynamic equilibrium · Phase transitions

Mathematics Subject Classification 80A10 · 80A50

1 Introduction

The state of equilibrium in an isothermal–isobaric system is given by the values of
pressure (p) and temperature (T ) and by the chemical composition x1, x2, . . . , x̃C ,
where xi is the mole fraction of the i th component, with the tilde over one of the
fractions indicating that for closed systems, the fraction is given by the values of other
fractions: x̃C = 1− (x1 + x2 +· · ·+ xC−1). The set of parameters that characterise the
system shall henceforth be marked by the general symbol χ ≡ (p, T, x1, x2, . . . , x̃C ).
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In a thermodynamic equilibrium, the values of these parameters lead to the minimum
of the Gibbs function [1]:

G ≡ G(χ) ≡ H(χ) − T S(χ) (1)

where G, H , and S are, respectively, the molar Gibbs function, molar enthalpy, and
molar entropy of the system. It can be shown that in multi-phase systems, the minimum
G condition is met if the chemical potentials of each i th component are equal in all
phases [1,2]:

μ
(k)
i = μ

(k′)
i ≡ μi k, k′ = 1, 2, . . . , P (2)

where:

μi =
(

∂G

∂xi

)
p,T,x j

(3)

Conditions (2) lead to the relationship called the Gibbs’ phase rule [1,2], which
indicates the number of thermodynamic parameters, i.e., degrees of freedom ( f ),
in a system in equilibrium between phases with C independent components and P
thermodynamic phases. In a system that is not restrained in any way (e.g., by having
several phases with the same composition), the rule is given by:

f = C − P + 2 (4)

In special cases where there exist r aforementioned restraints, the ‘2’ in Eq. (4) is
replaced with ‘2−r’.

The phase rule (4) is identical to the equation derived from Euler’s topological
theorem on planar graphs [3]. The theorem states that the number of faces (F), edges
(E), and vertices (V ) in a connected planar graph drawn on a surface that is isomorphic
with the surface of a two-dimensional sphere (2-S) is given by the equation:

F = E − V + 2 (5)

Initially Euler formula (5) had usually interpreted in terms of polyhedra. Recently
graph theory and topology indicate that (5) relates to a wider class of expressing
mathematical objects, i.e. the planar graph on the surface of topologically isomorphic
to the 2-D sphere without holes. This extension seems logical, if noted that Euler’s
formula also relates to e.g. a loop with one vertex or two vertices cycle.

The surprising similarity between equations from two relatively distinct areas of
science has for almost 80 years motivated chemists to attempt to interpret thermody-
namic equilibria through graph theory [4–12]. Assuming that the similarity between
Eqs. (4) and (5) is not just a coincidence, or ‘God’s fancy’, then the thesis becomes
justified that a connected planar graph drawn on a surface that is isomorphic to 2-S
can be ascribed to any given thermodynamic equilibrium. Not all researchers who
have interpreted the similarity understood this relationship. For instance, authors of
the most frequently quoted publication on graphs in the thermodynamics of equilibria
[9] ascribe a planar graph not to individual equilibrium states but to all equilibrium
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states of the same kind in general, i.e., to all areas and lines in a phase diagram. Such
a proposal seems as nonsensical as a proposal to ascribe a single biometric passport
to all citizens of a given country simply because they all belong to the group of beings
that each possess one head, two arms, and two legs.

In our previous publications [12–14] on the graph representation of thermodynamic
equilibria, we showed that a planar graph representing an equilibrium is nothing else
than a graphical form of the Gibbs function (1). The value of this function can be
interpreted as the (minimal) length of the path that connecting the graph vertices,
which in turn are nothing else than the degrees of freedom in the system. The graph
obtained in this manner is connected and includes no simple cycles; in other words,
it constitutes a tree. Each degree of freedom of the graph is obtained by mapping
the equilibrium state onto a certain reference state. A change in the thermodynamic
state is represented by the change in the positions of graph vertices, which leads to the
change in edge lengths. At certain positions of graph vertices, graph edges form closed
areas (e.g., loops or cycles) on the surface. The forming of planar graphs with loops
or cycles from tree graphs represents a thermodynamic transformation that involves
the creation of a new phase.

The following issues remain unresolved so far:

1. What constitutes the 2-D surface on which the planar graph of a thermodynamic
state is drawn?

2. What reference state (RS) should we choose that would allow the mapping of
the thermodynamic state in question (i.e., a point in the space of thermodynamic
parameters) onto such an RS to represent the set of degrees of freedom in the
system (i.e., graph vertices) objectively, rather than subjectively?

We provide the answers to these questions and related questions further in this
article. It seems that these answers will ultimately explain the connection between
Gibbs’ phase rule and Euler’s formula for planar graphs. Thus, Nenad Trinajstic’s
statement from 1992 that ‘The exact connection between the Euler formula and the
Gibbs phase rule has not yet been established’ [15] will finally be proven wrong.

2 Theory

A set of values of a function creates in the arguments – values of a function space a
geometric shape referred to as a topological manifold [16]. The topological manifold
for a function of n variables is usually an n-dimensional object immersed in a space
with n + 1 dimensions (n x-axes and one y-axis).

The issue of topological manifolds of thermodynamic functions, especially with
respect to their dimension, has gone unnoticed in thermodynamics thus far. The
issue is implied in Carathéodory’s [17,18] approach to axiomatic thermodynamics.
Carathéodory, when discussing differential equations in thermodynamics (Pfaffian
equations), states that the equation:

d Q =
n∑

i=1

Ai (x1, x2, . . . , xn)dxi = 0 (6)
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is holonomic, i.e., there exists such a multiplier λ(x1, x2, . . . , xn) that transforms (6)
into:

d S(x1, x2, . . . , xn) = λ(x1, x2, . . . , xn)

n∑
i=1

Ai (x1, x2, . . . , xn)dxi = 0 (7)

where dS is an exact differential. Thus, the solutions of (7) take the form:

S(x1, x2, . . . , xn) = const (8)

where ‘const’ is any constant. Carathéodory terms equation (8) the equation for the
surface in space with n+1 dimensions (n parameters plus 1 value of a function).
However, it seems more justified to refer here to a topological manifold rather than a
‘surface’ [16]. The author makes no explicit statement about the dimension of such a
manifold. Nonetheless, he suggests that the issue of dimension is important based on
his theorem on the non-intersecting of adiabatically different surfaces [i.e., surfaces
for which the value of ‘const’ in Eq. (8) differs].

Based on Eq. (1), one might expect that the dimension of the Gibbs function topo-
logical manifold for closed thermodynamic systems with C independent components
would equal C + 1 (C − 1 concentrations plus p and T ). Notice, however, that apart
from restraints due to the closed character of the system:

C∑
i=1

xi = 1 (9)

the Gibbs function is also affected by restraints derived from the Gibbs–Duhem the-
orem for isothermal–isobaric closed systems [19,20]:

C∑
i=1

xi dμi = 0 (10)

These constraints form C − 1 equations that can be written as:

C∑
i=1

xi

(
∂μi

∂x j

)
= 0 j = 1, 2, . . . , C − 1 (11)

If C −1 constraints given by Eqs. (11) affect a Gibbs function with C +1 degrees of
freedom, then we may conclude that the actual dimension of this function’s topological
manifold will equal (C + 1) − (C − 1), i.e., 2. As a result, all values of G should
be located on a 2-D surface regardless of how complex the closed thermodynamic
system is. This conclusion, while elementary for unary systems, is not as obvious
for system with two or more components. To illustrate: why should the values of the
Gibbs function for the binary system G(p, T, x1, x̃2) form a 2-D surface immersed
in a 5-D space (four x-axes and one y-axis) rather than a 4-D topological manifold
immersed in a 5-D space? The qualitative answer to this question lies in the statement
that the state of a system is defined by a set of parameters χ that must be determined
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by the mean value of energy in the system, i.e., the internal energy (U ), and by the
mean value of information about the system, i.e., entropy (S). These two values may
create a network of geodesic lines of the Gibbs function topological manifold; in such
a case, the manifold will be 2-D regardless of the number of components in the system.
Further in this article, we will not use a network of geodesic lines formed directly by
U and S but rather a more natural network formed by X and Y , where:

X = X (χ) ≡ H(χ) Y = Y (χ) ≡ −T · S(χ) (12)

Before we apply the network of geodesic lines defined in (12) to describe the Gibbs
function topological manifold, let us briefly consider 2-D topological manifolds. It
will be interesting to divide such manifolds into smooth manifolds and piecewise
smooth manifolds. A characteristic feature of the latter is that the first derivative is
discontinuous in at least one point of the manifold. The Gibbs function topological
manifold is without a doubt complex, rather than smooth, because it is created by
“gluing” together sections of smooth manifolds that correspond to individual phases
k = α, β, γ, . . . of the system. The gluing takes place along the phase transformation
line. It is unclear whether the phase transformation line constitutes a geodesic line
of the manifold. We will address this issue in a further part of this work. It is worth
noticing a particular property that distinguishes the two manifolds: while in the former,
two points lie close to each other only if both geodesic coordinates of these points
are almost equal in value, in the latter, two points may have vastly different values of
coordinates and still lie close to each other (but only when, of course, these points are
located close to the gluing line, i.e., the phase transformation line).

Another issue worth mentioning is the immersion of 2-D manifolds in a Euclidian
space. The topological theorem on the immersion of smooth manifolds [16] states that
every smooth manifold with the dimension D can be immersed in a Euclidian space
with the dimension 2D +1. For instance, a curve, i.e., a 1-D manifold, will fit in a 2-D
space, but a curve with knots, such as a 1-D manifold with any degree of complexity,
requires a 3-D space to fit. Thus, the immersion theorem allows us to conclude that all
topologically allowed thermodynamic states will only appear for systems with three or
more independent components. This is because the dimension of a space drawn on the
thermodynamic parameters of these systems equals 5 or more, and only such a space
can contain any 2-D topological manifolds, including all manifolds that represent the
Gibbs function.

For the kth phase of single-component systems, the Gibbs function (1) is represented
by a network of geodesic lines given by (13):

G(k)(X, Y ) = X (k) + Y (k) (13)

where X (k), Y (k) are the values of X and Y for the kth phase defined in (12).
We shall use Eq. (14) to describe multi-component systems:

G(k)(X, Y ) =
C∑

i=1

xiμ
(k)
i ≡

C∑
i=1

g(k)
i (X, Y ) (14)
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where g(k)
i may be termed the weighed chemical potentials of the ith component:

g(k)
i =

(
∂G(k)

∂ ln xi

)
p,T,x j

(15)

A change in the Gibbs potential is given by the following differential:

dG(k) =
⎧⎨
⎩

d X (k) + dY (k) C = 1
C∑

i−1

[(
∂g(k)

i
∂ X (k)

)
d X (k) +

(
∂g(k)

i
∂Y (k)

)
dY (k)

]
C > 1

(16)

Each thermodynamic equilibrium state defined by the values of thermodynamic
parameters marked χ0 ≡ (p0, T0, x10, x20, . . . , x̃C0) is represented by the point
R(k)

0 = (X (k)
0 , Y (k)

0 ) located on the G(k) surface. The distance between this point
and G = 0 is the value of the Gibbs function in the kth phase of the system. In ther-
modynamics, the value of a function is usually provided not in relation to the zero of
the function but in relation to the value of the function in a certain reference state.

If we define this reference state as χ∗ ≡ (p∗, T ∗, x∗
1 , x∗

2 , . . . , x̃∗
C ), then the value

of the Gibbs function will be given by:

�G(k) = G(k)(χ0) − G(k)(χ∗) (17)

The thermodynamic state χ0 mapped onto the reference state χ∗ allows the latter to
be represented by the set χ1, χ2, . . . , χC+1, where:

χ1 = (
p0, T ∗, x∗

1 , x∗
2 , . . . , x̃∗

C

)
χ2 = (

p∗, T0, x∗
1 , x∗

2 , . . . , x̃∗
C

)
·
χC+1 = (

p∗, T ∗, x10, x∗
2 , . . . , x̃∗

C

)
(18)

Figure 1 explains the mapping operation performed in two dimensions.
The set χi creates the set of points R(k)

i i = 1, 2, . . . , C + 1 on the surface of the
Gibbs function manifold. These points represent the degrees of freedom in the system
on this surface:

R(k)
1 =

(
X (k)(χ1), Y (k)(χ1)

)

R(k)
2 =

(
X (k)(χ2), Y (k)(χ2)

)
·
R(k)

C+1 =
(

X (k)(χC+1), Y (k)(χC+1)
)

(19)

It is worth noticing that, firstly, there are as many of these points as there are degrees
of freedom in a one-phase equilibrium state, and secondly, each point R(k)

i represents
one degree of freedom in the system rather than two, as one would expect from a
point located on a 2-D space. The latter fact stems from the constraints induced by the
reference state.
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Fig. 1 Mapping of the point R0 onto the reference point R* in a two-dimensional space (x, y). a An
orthogonal coordinate and b a curvilinear coordinate system

2.1 One-phase systems

This part of the article will show that in an equilibrium state of one-phase systems,
the value of the Gibbs function calculated relative to a certain reference state (17) is
equal to the length of the minimal path connecting the individual degrees of freedom
(19) on the surface of the G(k) function manifold.

Let us begin with unary systems with only two degrees of freedom: R(k)
1 , R(k)

2 .
Equation (16) indicates that the value of the Gibbs function along the path connecting
the two degrees of freedom equals:

∫

R(k)
1 ∩R(k)

2

·dG(k) =
∫

R(k)
1 ∩R(k)

2

·d X (k) +
∫

R(k)
1 ∩R(k)

2

·dY (k) (20)

where R(k)
1 ∩ R(k)

2 is the arc connecting the points R(k)
1 , R(k)

2 .
In the equilibrium state, the change in the Gibbs potential (20) reaches the minimum.

The value of this minimum depends only on the location of the points R(k)
1 , R(k)

2 :

�G(k)
(

R(k)
1 , R(k)

2

)
= min

⎛
⎜⎜⎝

∫

R(k)
1 ∩R(k)

2

·dG(k)

⎞
⎟⎟⎠ =

[
X (k)

(
R(k)

2

)
− X (k)

(
R(k)

1

)]

+
[
Y (k)

(
R(k)

2

)
− Y (k)

(
R(k)

1

)]

≡ G(k)
(

R(k)
2

)
− G(k)

(
R(k)

1

)
(21)
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Fig. 2 For unary systems, the value of the Gibbs function in a state defined by the geodesic coordinates
R0, measured relative to the reference state R*: �G = G(R0) − G(R∗) is equal to the length of the
minimal path on the surface of the Gibbs function 2-D topological manifold connecting the degrees of
freedom R2 and R1. The section of the topological manifold in question is marked in yellow, the network
of geodesic lines (X, Y ) is marked with the thin black line, the minimal path connecting the degrees of
freedom is marked with the thick black line, and the reference state, located at the bifurcation point of the
phase transformation line, is marked with an asterisk (Color figure online)

It is easy to notice that the value of �G(k)(R(k)
1 , R(k)

2 ) is exactly equal to the value of
the Gibbs function in the χ0 state measured in relation to the reference state (17):

�G(k)
(

R(k)
1 , R(k)

2

)
= G(k)(χ0) − G(k)(χ∗) (22)

Equation (22) shows that the values of the Gibbs function are encoded in the geometry
of the function’s topological manifold. In particular, these values are equal to the
length of the minimal path on the manifold surface connecting the two degrees of
freedom in the system (Fig. 2). This leads to the natural conclusion that for one-phase
unary systems, the values of the Gibbs function are represented by a graph with two
vertices (Fig. 2) and edge length equal to the value of the Gibbs function. Each vertex
represents one degree of freedom in the system.

What about one-phase multi-component systems? For binary systems, the answer
is easy and unambiguous. The value of the Gibbs function is defined by the three
degrees of freedom R(k)

1 , R(k)
2 , R(k)

3 and is equal to the integral over the shortest path
connecting these degrees of freedom. If we number the degrees of freedom in such a
manner that the path consists of arcs connecting points 1–2 and 2–3, then
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Fig. 3 In a state of equilibrium, the Gibbs potential measured relative to the reference state (marked with
an asterisk in the figure) is equal to the length of the minimal path on the topological manifold connecting
the individual degrees of freedom Ri in the system. a A state graph that represents the path for a one-phase
system with C = 1, and b graphs for one-phase systems with C = 3

�G(k)
(

R(k)
1 , R(k)

2 , R(k)
3

)
=

2∑
i=1

∫

R(k)
i ∩R(k)

i+1

[(
∂g(k)

i

∂ X (k)

)
d X (k) +

(
∂g(k)

i

∂Y (k)

)
dY (k)

]

(23)
To facilitate calculations, let A denote the first component of the system [i = 1 in
(23)] and B denote the second component. Then the integral in Eq. (23) leads to the
relationship:

�G(k)
(

R(k)
1 , R(k)

2 , R(k)
3

)
= g(k)

A

(
R(k)

1 , R(k)
2

)
+ g(k)

B

(
R(k)

2 , R(k)
3

)
(24)

This equation is represented by a graph, namely, a tree with two edges (Fig. 3a). The
edges in this graph are the weighted chemical potentials of individual components of
the system.

Topological interpretation of the Gibbs phase rule allows us to see only the topo-
logical aspects of the equilibrium. For the equilibrium involving H2(g), N2(g) and
NH3(g) (i.e. the system with C = 2, P = 1 and f = 3) the topological aspects of the
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Table 1 State graphs for moderately complex systems, i.e., those with C no greater than 4. The description
under Fig. 4 shows individual independent components and their corresponding lines. The values of the
degrees of freedom can be found in column 1 of the table. Each state graph for systems with C = 4 that
will be used in the further part of this publication is marked with an identifying symbols. Description of the
components and the phase is the same as in Fig. 5.

equilibrium are represented by a simple graph, i.e. 2-vertices tree (see Table 1: graph
in row3 and column3). Examples of graphs representing the states of equilibrium on
the phase diagrams of simple chemical systems are given in my previous work [12].

The corresponding calculations for systems with three or more components and
four or more degrees of freedom are more complicated due to the fact that for f ≥ 4,
there exists more than one way in which the edges can connect the degrees of freedom
(graph vertices). These ways differ in the extent to which the tree branches out. For
instance, for C = 3, the graphs that represent the value of the Gibbs function will
represent Eqs. (25a) and (25b), which show how the Gibbs function may depend on
the four degrees of freedom in the system:
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�G(k)
(

R(k)
1 , R(k)

2 , R(k)
3 , R(k)

4

)
= g(k)

A

(
R(k)

1 , R(k)
2

)
+ g(k)

B

(
R(k)

2 , R(k)
3

)

+ g(k)
C

(
R(k)

3 , R(k)
4

)
(25a)

�G(k)
(

R(k)
1 , R(k)

2 , R(k)
3 , R(k)

4

)
= g(k)

A

(
R(k)

1 , R(k)
2

)
+ g(k)

B

(
R(k)

1 , R(k)
3

)

+ g(k)
C

(
R(k)

1 , R(k)
4

)
(25b)

Figure 3b shows graphs that represent the value of the Gibbs function for C = 3.
With the increase in the number of components C , the number of states represented
by a branching tree increases. For C = 4, the number, marked η, equals 2 (plus 1
non-branching graph); for C = 5, η = 5; for C = 6, η = 10; and for C = 9, η = 105
[21]. In our previous publication [12], we used the term exotic states to denote the
thermodynamic states represented by such graphs, because these states appear only
in complex systems with C ≥ 3, which have yet to be researched in detail. The
subsequent part of this article will discuss the numerous reasons why quasicrystals
may constitute exotic states. Notice that exotic states begin to appear from C = 3, i.e.,
from the point where the dimension of a Euclidian space drawn on thermodynamic
parameters reaches 5. As has been mentioned, the topological theorem on immersion
allows any type of 2-D topological manifolds to be immersed (i.e., inserted without
self-intersections) in such a space, including manifolds represented by the values of
the Gibbs function.

In sum, the value of the Gibbs function for a one-phase equilibrium state is repre-
sented by a tree located on the 2-D surface of the topological manifold G. Weighted
chemical potentials of individual components constitute graph edges. Degrees of free-
dom in the system, obtained by mapping the classically defined state (a point in a
space drawn on thermodynamic parameters) onto a certain RS, constitute vertices that
connect the individual edges in this state graph. This is why we shall now address the
choice of the RS.

2.2 Reference state

Let us begin with unary systems. If the state of the system is identical to the RS:
χ0 ≡ χ∗, then such a state has no degrees of freedom, i.e., is an invariant state. Note
that in unary systems, the RS involves the co-existence of three phases. Equations (4)
and (5) indicate that such a state is represented by a planar graph with three faces,
one edge, and no vertices. Such a graph seems peculiar at first, but if we consider the
surface of the Gibbs function G(p, T ) for unary systems or the mapping of this surface
on the p, T surface, we will notice that G(p, T ) consists of three sections of individual
phases glued along the phase transformation line (Fig. 4a). The phase transformation
line has a bifurcation point at the meeting point of the three sections, i.e., a point with
zero variance. Thus, the state graph for the RS is the phase transformation line on the
surface of the Gibbs function. The bifurcation point on this line is the RS, while the
graph faces are the sections of the surface that correspond to individual phases of the
system. Such an interpretation of the RS constitutes a tool that allows invariant states
in complex systems to be classified. Figure 4b, c shows the types of invariant states
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Fig. 4 Invariant state graphs for systems with C = 1, 2, and 3 independent components. Component A is
marked with a continuous line, component B is marked with a dashed line, component C is marked with
a dotted line, and component D is marked with a dashed-dotted line. Individual phases are marked with
Greek letters. The composition of a given phase is marked with the lines of individual components adjacent
to the phase

for binary and ternary systems. Note that for topological reasons, the tool enables us
to rule out the existence of certain equilibrium types at a point with zero degrees of
freedom. For instance, in binary systems, four phases with both components, ((A,B),
(A,B), (A,B), (A,B)), or two phases with one component each and two phases with
both components, ((A), (B), (A,B), (A,B)) and ((A), (A), (A,B), (A,B)), may exist at
such a point. However, equilibria such as the one that involves three phases with one
component each and one phase with both components are forbidden.

An invariant state is the only characteristic point on the G(χ) surface, which is why
choosing it at the RS seems objectively justified. Another characteristic element of the
Gibbs function topological manifold is the phase transformation line, which seems to
make choosing it as on the coordinate axes of the system justified. Of course, such a
coordinate system will be curvilinear.

2.3 Two-phase systems

For unary systems, a two-phase state will be represented by a point located on the phase
transformation line. Because the line also constitutes an axis of the coordinate system,
the classically defined state will take the form χ0 = (p∗, T0) or χ0 = (p0, T ∗). If we
select the first form of the state, then according to (18), the mapping of this state onto
the RS will lead to:

χ1 = (
p∗, T ∗) ≡ χ∗

χ2 = (
p∗, T0

)
(26)
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On the surface of the Gibbs function manifold R(k)
i , the coordinates of these points

will depend on which phase (either of two) we approach the phase transformation line
from:

R(k)
1 =

(
X (k)(χ1), Y (k)(χ1)

)
≡ R(k)∗

R(k)
2 =

(
X (k)(χ2), Y (k)(χ2)

)
(27)

where k = α, β. Because the points R(α)
1 and R(β)

1 are identical to the RS, only the

points R(α)
2 , R(β)

2 will define the state of the system. Note, however, that these points
overlap or are located close to each other despite having different coordinates. Such a
behaviour on the part of points located on the phase transformation line in a piecewise
smooth manifold has already been mentioned in this article. Now we shall explain the
reasons for such behaviour. The condition for a two-phase equilibrium (28) states that
the value of the Gibbs function is equal for both values of the geodesic coordinates
R(α)

2 , R(β)
2 , i.e., the same point on the Gibbs topological manifold corresponds to

these two coordinates:
G

(
R(α)

2

)
= G

(
R(β)

2

)
(28)

where:

G
(

R(α)
2

)
= X (α)(χ2) + Y (α)(χ2); G

(
R(β)

2

)
= X (β)(χ2) + Y (β)(χ2) (29)

This point is a vertex of the state graph and unambiguously defines the value of the
Gibbs function in this equilibrium. The value is equal to the length of the graph edge.
Figure 5 shows how such graphs are constructed. Figure 5a addresses the case where
the phase transformation line is a geodesic line. In such a case, the graph will consist
of two edges that, due to their proximity, combine into one edge that crosses the point
R(k)

2 . Figure 5b addresses the case where the gluing line is not geodesic. Note that the
graph in Fig. 5b conforms to that suggested by Euler’s formula (5), which indicates that
a planar graph with one vertex and one edge must have two faces that, according to the
phase rule (4), correspond to the individual phases in the system. It seems, therefore,
that the phase transformation line is most likely not geodesic (albeit this issue should be
thoroughly investigated in the future). In sum, the state of a two-phase, unary system is
represented by a one-edge cycle, i.e., a loop with one vertex formed by gluing together
the points R(α)

2 and R(β)
2 . Hence, graph theory describes a phase transformation in the

following manner: if one of the degrees of freedom represented by a graph vertex, e.g.,
R(α)

2 is located on the gluing line of a Gibbs function topological manifold, then the

edge connecting R(α)
2 and R(β)

2 has a lower length (i.e., equal to zero) than the edge

connecting R(α)
2 with, e.g., R(α)

1 in the original graph. Thus, the state represented by

the graph R(α)
2 –R(α)

1 becomes the state represented by the graph R(α)
2 –R(β)

2 . Because
in the latter graph the vertices overlap (they have undergone gluing), it will have one
vertex less than the original graph and will, therefore, include a loop or a cycle.

123



508 J Math Chem (2015) 53:495–513

Fig. 5 A graph of a two-phase system with C = 1. Such a state forms if the degree of freedom R2
is located on the phase transformation line. The state graph is created by gluing together the degrees of

freedom R(α)
2 , R(β)

2 into the point R2 connected with a line that crosses this point and the reference state.
The graph in a corresponds to the situation in which the phase transformation line is a geodesic line. In such
a case, the graph comprises two lines located very close to the phase transformation line on the sections of
phases α and β. The graph in b corresponds to the situation where the phase transformation line is not a
geodesic line. In such a case, the graph comprises a loop that crosses the point R2 and the reference state.
The graphs in a, b are marked with a brown line (Color figure online)

Before we review the types of state graphs in multi-phase systems, let us attempt to
simplify the presentation of graphs with loops or cycles. The simplification will involve
transposing such graphs from a piecewise smooth surface onto a smooth surface. As
Fig. 5b shows, on a piecewise smooth surface, both phases are represented by the
smooth sections of a topological manifold. The gluing line of the manifold (the phase
transformation line) divides these sections. On the other hand, Eqs. (4) and (5) indicate
that on a smooth surface, thermodynamic phases are represented by the interior and
exterior face of the graph (a loop or a cycle). A smooth surface is easier to handle;
moreover, it is easier to interpret topological properties of graphs located on such
a surface. For the latter reason, we shall smooth (“flatten”) the piecewise smooth
manifold by eliminating gluing lines. Obviously, we will first (prior to the smoothing)
transpose each surface representing the phases of the system onto the exterior and
interior face of the graph (a loop or a cycle) face. Figure 6 shows the simplification
procedure based on the graph from Fig. 5b. As a closing remark, note that such a
simplification operation for cyclic graphs is only meant to facilitate interpreting the
findings of graph theory with respect to complex multi-phase systems.

2.4 Complex multi-phase systems

Let us begin with a summary: the values of the Gibbs function form a 2-D topological
piecewise smooth manifold. By choosing an invariant state on the surface of this
manifold as a reference state, we are able to present the thermodynamic state of the
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Fig. 6 Smoothing multi-phase state graphs involves transforming the state graph from a piecewise smooth
topological manifold into a smooth manifold. The figure shows smoothing for unary systems (C = 1)

system using a set of points, i.e., the degrees of freedom in the system. The value
of the Gibbs function for the equilibrium state is equal to the length of the shortest
path connecting the individual degrees of freedom. This path forms a state graph that
represents the thermodynamic equilibrium state. Each degree of freedom constitutes
a graph vertex and the weighed chemical potential of each component, i.e., each
component’s contribution to the value of the Gibbs function, constitutes a graph edge.
Finally, graph faces represent the individual phases of the system, with each phase’s
composition determined by the edges that form a given face.

Graph faces that represent phases of multi-phase systems form if a given degree (or
degrees) of freedom and a given graph vertex (vertices) are located on the manifold
gluing line (or lines). In such circumstances, two or more graph vertices become glued
and a cycle (often a loop) is created within the graph. Table 1 shows a list of state
graphs for systems with C = 1, 2, 3, 4 components. The table indicates that one-phase
states represented by branching trees start to appear for C = 3 and that the number of
such states increases with the increase in C . There are many more two-phase system
types than one-phase system types. For instance, 2 two-phase types exist for C = 2
and four exist for C = 3, whereas as many as nine exist for C = 4. Nonetheless, all
these types can always be divided into two classes. The first class includes equilibria in
which both phases include all components of the system, and the second class includes
equilibria in which one phase includes different components than the other.

The former class includes congruent equilibria1, while the latter comprises only
non-congruent equilibria. The first class is represented by only one state graph that

1 about congruent and non-congruent processes in [19] we can read: if “the components form a compound
stable up to the melting point” then “the compound melts at a constant temperature and the melt has
the same stoichiometric composition; such compounds are said to have congruent melting points” and if
“the components form a compound unstable at the melting point” then it “decomposes below its melting
point, which on further heating forms a melt with a composition different from that corresponding to the
stoichiometry of the compound. These compounds are said to have incongruent (non-congruent) melting
point.”
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always constitutes a cycle with C edges. The second class is represented by consider-
ably more graphs that include loops as well as cycles. There are three such states for
C = 3 and as many as eight for C = 4. It is worth noting that even though two-phase
state graphs can form from one-phase state graphs by gluing the appropriate vertices
of a one-phase tree, not all one-phase states allow us to create a given type of a two-
phase state. Table 1 makes it easy to notice that, for instance, any of the four allowed
two-phase states represented by the graphs in the table can be created from a normal
state of a three-component system, but an exotic state of a three-phase system can only
become 1 of 2 two-phase state types, represented by the last two graphs in the same
table. Furthermore, as far as four-component exotic states are concerned, the state rep-
resented by graph a1 can become any of the states except those represented by graphs
b0 and b7, and a2 can become either b3 or b5. On the other hand, one-phase normal
states of such systems represented by a0 can become all two-phase system types except
those represented by graphs b4, b5, and b8. How do individual two-phase state types
differ with respect to the graph-based representation of states? Providing a general
answer is difficult. While systems with C = 2 differ in the composition of individual
phases (in the state represented by the first graph in Table 1, both phases have the
same qualitative composition, but in the state represented by the second graph, their
composition is different), the same is not true for systems with C ≥ 3. This, as can
easily be noticed based on Table 1, is due to the fact that there always exist at least two
graphs that correspond to particular states with no differences in phase composition.
Do such types of degenerated equilibria have any property that would differentiate
them? It seems that the answer can be found by investigating the transformation of
such equilibria into simpler (i.e., with a smaller number of phases) or more complex
ones (i.e., with a greater number of phases). For instance, the two-phase equilibrium
with C = 3, represented by the ‘loop at the terminal vertex’ graph, cannot become a
one-phase exotic state, while the state represented by the ‘loop at the central vertex’
graph cannot become a one-phase normal state. For very complex system composi-
tions, such as systems with C >> 4, the specifics of individual two-phase equilibria
represented by different graph types are even more perplexing and require further
investigation. Let us now briefly consider ascribing individual state graph types to
points on the phase diagram. Ascribing these types poses no difficulty for systems
with C = 1 or C = 2 and has been described in our previous publication [12]. Let
us only remind the reader that, e.g., for a system with C = 2, the ‘cycle with two
edges’ represents a point on the phase transformation line on the diagram showing a
system with two components that are mixed in both phases, while the ‘loop glued to
a tree with one edge’ graph represents a state on the phase transformation line on the
diagram showing binary eutectic systems [12].

Equilibrium graphs with three or more phases can be created by gluing several
vertices in equilibrium graph with fewer phases. The number of such graphs will
increase up to a certain point and consequently, so will the number of equilibrium
types with three or more phases. The equilibrium in systems with C + 1 phases will
constitute a critical point. The state of such systems is determined by one degree of
freedom. Furthermore, as Table 1 shows, there exists only one equilibrium type for
such systems, represented by a graph composed of only C loops. Note also that the
number of different thermodynamic equilibrium types increases if we take into account
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not only graph topology, but also the chemistry of the system. For instance, a one-phase
normal state of a three-component system represented by a three-edge non-branching
tree will become three graphs that differ only in edge permutation once the chemistry
of such a system is taken into account. If the number of degrees of freedom in the
system decreases to zero (an invariant state), the number of equilibrium types will
increase. However, it is the chemistry, not topology, of the system that is responsible
for this increase. In graph theory, the influence of one chemical factor can most easily
be taken into account by “painting” the gluing edges and lines of the manifold with
different colours corresponding to different components in the system. Once such a
method is used, it becomes apparent that there exist three equilibrium types for binary
systems and five equilibrium types for invariant systems with C = 3.

3 Summary and conclusions

This article investigated the reasons for the similarity between the Gibbs’ phase rule
(4) and Euler’s theorem (5) on planar graphs on isomorphic surfaces with the surface
of a two-dimensional sphere (2-S). It was shown that the similarity is not coincidental
but instead stems from the fact that for closed isothermal–isobaric systems, the Gibbs
function topological manifold is a two-dimensional piecewise smooth surface (2-D).
The locations of any points on this surface are determined by the values of two geo-
desic coordinates defined on the surface. This surface has, at a first glance, a peculiar
property: the height of any point (that represents a state of the system) located in the
smooth area of the manifold, measured relative to a reference point (i.e., an invariant
state), is equal to the length of the minimal path connecting the degrees of freedom
in the system, i.e., points on the surface that constitute a mapping of the state onto
the reference state of the system. The equality between the height of the point on the
surface and the length of the path introduces a graph-based representation of equi-
librium states into phenomenological thermodynamics. In such a representation, an
equilibrium state represented by a point on the surface of the Gibbs function is also
represented by a tree graph in which the path connecting individual vertices is equal to
the value of the Gibbs function. If one or more graph vertices are located on the gluing
line of the topological manifold (the phase transformation line), then two or more graph
vertices will become glued. The gluing of vertices creates cyclic components in the
graph (loops or cycles). Such a graph represents a multi-phase equilibrium in the sys-
tem. Thus, gluing vertices or breaking them apart may be interpreted as a graph-based
description of phase transformations. A state graph with cycles can be transferred onto
a smooth surface (from a piecewise smooth surface) using a simple transformation.
The sole purpose of such a transformation is to facilitate interpreting the properties
of the graph representation. Graph faces represent individual phases of the system.
One may suggest that the conventional representation of a thermodynamic equilibrium
state (a point in a space drawn on thermodynamic parameters) is sufficient and ask why
the additional, graph-based representation of equilibrium states is necessary. Below
is a list of conclusions, i.e., information obtained by applying the graph-based repre-
sentation of equilibrium states in phenomenological thermodynamics. One can easily
notice that this information cannot be obtained using the conventional representation
of equilibrium states.
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1. The values of the Gibbs function G(p, T, x1, x2, . . . , x̃C ) for a closed isothermal–
isobaric system, due to constraints imposed on the function by the Gibbs–Duhem
equation, create a two-dimensional topological manifold in a space drawn on
thermodynamic parameters regardless of the number of components (C).

2. Phenomenological thermodynamics allows a graph-based interpretation of equi-
librium states. The state graph of an equilibrium is a graphical representation of
the value of the Gibbs function in equilibrium. It is surprising that the state graph
is located on a 2-D surface, i.e., on a Gibbs function topological manifold. The
vertices of such a graph are the degrees of freedom in the system, its edges are the
weighted chemical potentials of individual components, and its faces are the indi-
vidual phases, the composition of which is determined by components represented
by the edges that form a given face.

3. Applying the graph-based representation of states allows us to count the number of
equilibrium state types in a one-phase system. The number is equal to the number
of trees with a particular number of edges. In turn, the number of trees is equal to
the number of independent components in the system.

4. With the increase in the complexity of one-phase systems beginning with C = 3,
‘exotic’ states begin to appear in addition to normal states in equilibrium ther-
modynamics. These exotic states are represented by branching trees and are the
subject of the following part of the publication.

5. As far as the author is concerned, it is only graph theory that allows one to classify
the types of invariant states. Only one such state exists for systems with C = 1,
three exist for C = 2, and as many as five exist for C = 3.

6. The number of equilibrium types with more than two phases increases with the
complexity of the system up to equilibria with C + 1 phases. From a topological
perspective, there exists only one type of such an equilibrium, represented by C
loops suspended on a single vertex.

7. The graph-based representation of states enables the division of two-phase equi-
libria into classes. The number of these classes increases with the increase in the
number of independent components (C). Two classes exist for C = 2, four exist
for C = 3, and as many as nine exist for C = 4. One of these classes always
represents congruent processes (a cycle with C edges constitutes the state graph
in this case), while other classes represent non-congruent processes.

In my opinion, the results presented in this paper will lead to Professor Nenad Trinajs-
tic’s [15] statement on the relationship between Euler’s formula (5) and Gibbs’ phase
rule (4) becoming outdated.
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